

Report No. FHWA-RD-78-144

THREE YEAR RESULTS ON THE PERFORMANCE OF INCINERATOR RESIDUE IN A BITUMINOUS BASE

August 1978 Interim Report

Reprinted June 1979

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

REPRODUCED BY: NUTS U.S. Department of Commerce National Technical Information Service Springfield, Virginia 22161

Prepared for

FEDERAL HIGHWAY ADMINISTRATION Offices of Research & Development Washington, D.C. 20590

FOREWORD

This report describes laboratory and field evaluations of an experimental bituminous base mix using incinerator residue as aggregate which was placed during 1974 in Houston, Texas. An adjacent conventional bituminous concrete pavement was also constructed and evaluated as a control section. Both 6 inch base test sections were covered with $1\frac{1}{2}$ inches of standard bituminous concrete wearing surface. After 4 years of service the results indicate that the incinerator residue test base is performing in an excellent manner and as well as the control base.

This publication is being distributed to bituminous technologists and will be made available to anyone interested in the new concepts developed on the use of incinerator residue waste as highway material. This report is the second in a series to result from this continuing research being conducted by the Texas Transportation Institute for the Federal Highway Administration.

The assistance of the City of Houston in this study is gratefully acknowledged.

171 Charles F. Schoffey

Director, Office of Research

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation.

This report does not constitute a standard, specification or regulation.

The United States Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

· · · · · · · · · · · · · · · · · · ·		1	Technical Report Documentation Page
1. Report No. FHWA-RD-78 -144	2. Government Acces	ision Ne.	3. Recipicat's Catalog No. PB297978
4. Title and Sublitle THREE YEAR RESULTS ON TH	IE PERFORMAN	CE OF	3. Report Date August, 1978
INCINERATOR RESIDUE IN A	A BITUMINOUS	BASE	8. Performing Organization Report No.
D. J. Teague and W. B. L	edbetter		RF 968-2
9. Performing Organization Name and Address Texas Transportation Ins	stitute		10. Work Unit No. (TRAIS) FCP 34C1-024
Texas A&M University College Station, Texas	77843		11. Contract or Grant No. DOT-FH-11-8027
12. Somposing Agency Name and Address Office of Research and D Federal Highway Administ)evelopment tration		SECOND INTERIM REPORT June 1974 - October 1977
U. S. Department of Trar Washington, D.C. 20590	sportation		14. Sponsoring Agency Code M-0200 M/0566
FHWA Contract Managers: FHWA Implementation Mana	W. Clayton ((HRS-23) ger: W. C.	Ormsby (HRS-23 Besselievre (3) and Charles A. Pagen (HDV-22)
The use of incinera (termed littercrete) was experimental hot mixed 1 asphaltic concrete base conventional surface wer report presents the resu the first three years of	tor residue studied. ittercrete l (termed blac e placed on lts from ob in service	as an aggrega Test sections base and a cor ckbase control a city strees servations and performance.	te in a bituminous base consisting of the iventional hot mixed) and topped with a t in Houston, Texas. This tests on cores during
Results of the labo littercrete section is p with the conventional bl has occurred is minor cr limited to the conventio bases.	eratory and the erforming in ackbase cont acking in bo nal wearing	field evaluating an excellent trol section. oth sections. surface and h	ons show that the manner, almost identical The only distress that This cracking is has not progressed into the
	,		
¹⁷ Key Words Incinerator Residue, Sol Blackbase, Asphaltic Con Pavement, Experimental P	id Waste, crete avement	No restriction stolen No restricti available th Technical In Springfield,	on. This document is rough the National formation Service, Virginia 22161
19. Security Classif. (of this report) Unclassified	20. Security Class Uncla	ii. (of this page) Issified	21. No. of Poges 22. Price MA 69 PCA04A01

Form DOT F 1700.7 (8-12)

Reproduction of completed page outhorized

Section	on <u>Description</u>	Page
1.0	Introduction	1
	1.1Background <td< td=""><td>1 1 3 3</td></td<>	1 1 3 3
2.0	Materials	4
	<pre>2.1 Asphalt</pre>	4 4 4
3.0	Construction	8
4.0	Field Observation	9
5.0	Lab Investigation	9
	5.1General5.2Specific Gravity5.3Stability5.4Splitting Tensile Test5.5Schmidt Test	9 12 12 17 17
6.Ņ	Implications of the Results	24
Арре Арре Арре	ndix A - Experimental Results Summary	25 32 47
Refe	rences	58

Table of Contents

14

. . .

7

LIST OF ABBREVIATIONS AND SYMBOLS

Sym	DO	1

M_R

σ_T. r

Definition	or Description

Definition or Description	Unit
resilient modulus	psi (kPa)
ultimate strength	psi (kPa)
correlation coefficient	

• .

1.

iii

. .

List of Figures

.

Figure	Description	Page
Figure 1	Sketch of test section site.	2
Figure 2	Aggregate grdation chart showing incinerator residue in relation to Texas Class A Type C gradation specification.	7
Figure 3	Picture of longitudinal crack in in littercrete section.	10
Figure 4	Picture of cracked wearing surface.	10
Figure 5	Testing Program for Core Samples.	13
Figure 6	Bar graph showing Hveem Stability values for various times in service.	15
Figure 7	Bar graph showing Marshal Stability values at various times in service.	16
Figure 8	Ultimate strength versus unit deformation rate - 74°F one year field compacted littercrete and control sections splitting tensile test.	18
Figure 9	Ultimate strength versus unit deformation rate - 74°F two year field compacted littercrete and control sections splitting tensile test.	19
Figure 10	Ultimate strength versus unit deformation rate - 74°F three year field compacted littercrete and control section splitting tesile test.	20
Figure 11	Resilient Modulus versus temperature field compacted and one year field compacted samples, Schmidt test.	21
Figure 12	Resilient Modulus versus temperature field compacted and two year field compacted samples, Schmidt test.	22

List of Figures (Cont.)

Figure	Description	<u>Page</u>
Figure 13	Resilient Modulus versus temperature field compacted and three year field compacted samples, Schmidt test.	23
Figure 14	Ultimate strength versus unit deformation rate one year field compacted control splitting tensile test.	32
Figure 15	Ultimate strength versus unit deformation rate two year field compacted control splitting tensile test.	33
Figure 16	Ultimate strength versus unit deformation rate three year field compacted control splitting tensile test.	34.
Figure 17	Ultimate strength versus unit deformation rate one year field compacted littercrete splitting tensile test.	35
Figure 18	Ultimate strength versus unit deformation rate two year field compacted littercrete splitting tensile test.	36
Figure 19	Ultimate strength versus unit deformation rate three year field compacted littercrete splitting tensile test.	37

v

•

List of Tables

Table	Description	Page
Table 1	Asphalt Properties Summary	5
Table 2	1973 Traffic Data (Bingle Road at Yempstead Highway)	11
Table 3	Maximum Specific Gravity	14
Table 4	Experimental Results Summary for Stability Tests	25
Table 5	Stability Tests Results (Control)	29
Table 6	Stability Tests Results (Littercrete)	30
Table 7	Splitting Tensile Test Data (Littercrete)	38
Table 8	Splitting Tensile Test Summary (Littercrete)	41
Table 9	Splitting Tensile Test Data (Control)	43
Table 10	Splitting Tensile Test Summary (Control)	45
Table 11	Schmidt Test Results.	47
Table 12	Schmidt Data Summary	55

vi

۰.

1.0 Introduction

1.1 Background

The construction and maintenance of the United States' ever expanding highway system has created an increasing demand for quality construction materials. In terms of materials production, the strong lead which the United States enjoyed over other industrialized nations since the early 1950's has steadily diminished.⁽¹⁾

While there is an abundant supply of source materials for the production of quality aggregates for the foreseeable future⁽²⁾ the distribution of these sources does not always coincide with the location of need. This has increased the cost and the energy consumed in constructing transportation facilities. Attempts have been made to develop supplemental aggregate sources, economically and realistically, in an effort to fulfill localized demands. One such aggregate source being investigated is incinerator residue obtained from the burning of municipal solid wastes. The feasibility of using solid wastes in highway construction and maintenance has been investigated by the Texas Transportation Institute.⁽³⁾ Several potential uses of solid wastes were studied including its use as an aggregate replacement for base, subbase, and stabilized materials. This report is concerned with the four year in-service evaluation of municipal solid waste taken directly from an incinerator and used as an aggregate replacement in bituminous base construction on a city street.

1.2 Objective

The objective of this study was to determine the usefulness of municipal residue as an aggregate in bituminous base construction (termed littercrete in this study).

1.3 Scope

The work consisted of construction, control and evaluation of approximately 200 ft (60 m) of roadway on Bingle Road at the intersection of the old Hempstead Highway in Houston, Texas, Figure 1. This test section, contracted by

the City of Houston, and constructed in 1974 by Brown & Root, Inc., consisted of municipal incinerator residue from Houston's Holmes Road incinerator plant as the aggregate in a 6 in. (15.2 cm) thick bituminous base (termed littercrete) which was covered by approximately $1\frac{1}{2}$ in. (3.8 cm) of a conventional hot-mixed asphaltic concrete wearing surface. For comparison purposes a conventional aggregate bituminous base (termed blackbase control), situated adjacent to the test section, was constructed and evaluated. The evaluation period was four years.

1.4 Conclusions

1. Based on evaluation of recovered asphalt samples, the asphalt in both the littercrete and the control section is performing essentially the same in service.

2. Based on visual examinations of the pavement surface and cores, as well as the densities of the cores, the littercrete section, after three years in service, is performing as well as the blackbase control section. No rutting or shoving has occurred.

3. Laboratory results of strength, as determined by Marshall stability and splitting tensile strength values, verify the observation that the littercrete is performing as well as the blackbase control.

4. Laboratory results of the Hveem stability indicate the littercrete section has lost more stability than the black base control. The implications of these results are not known.

5. Laboratory results of the Resilient Modulus test indicate after three years in service the littercrete is performing essentially the same as when it was constructed while the control section has "hardened".

1.5 Recommendations

While the different test results indicate that the littercrete section is performing satisfactorily and should remain satisfactory for a long period of time, it is our recommendation that the test sections be observed and evaluated at one year intervals for another three years. After this additional three year evaluation period, another report should be prepared. With a potentially valuable aggregate substitute such as incinerator residue being tried, it is important to see if the littercrete test section does indeed continue to perform in a satisfactory manner.

2.0 Materials

2.1 Asphalt

The asphalt used throughout this study was an AC-20 grade asphalt cement, refined at Exxon's Baytown, Tex., refinery. Standard asphalt tests and asphalt extractions were performed on laboratory and field samples from both the littercrete and control sections during the three year evaluation period (Table 1). During the period of evaluation the viscosity of the recovered asphalt has increased and the penetration of the recovered asphalt has decreased. "Hardening" of the asphalt is a normal expectation due to oxidation and other forces on the asphalt. From the table it is apparent that the asphalt in each section is perform-

2.2 Aggregate

The aggregate consisted of municipal residue from the Holmes Road Incinerator Plant in Houston, Texas. A typical sample of this aggregate was compared to a Texas Class A-Type C grading specification (Figure 2) and was found to be within specifications except in the range of minus No. 30 (60μ m) to minus No. 200 (75μ m). The aggregate was found to contain appreciable fines which were not noticeable in the dry sieve analysis. When wet sieve analysis was conducted the aggregate was found to meet the Texas specifications.

2.3 Mix Proportion

Trial mixes consisting of 9, 10, and 11 percent asphalt by total weight of mix were mixed in the laboratory, compacted and tested to determine the optimum asphalt content of the mix. A discussion of the mix procedure, sample preparation, and test procedures used in the optimum mix design are given in the first report of this study. The seemingly high asphalt contents are due primarily to the low specific gravity of the aggregate (average of 2.13). Based on the results obtained, the recommended optimum mix design consisted of:

Table 1. Asphalt Properties Summary.^a

		Laboratory C	ompacted	F	ield Compac	ted Cores	
	Exxon	Cores		New		S1x-Mon	ths ^c
	AC 20	Littercrete	Control	Littercrete	Contro1	Littercrete	Control
Penetration					ĸ		
39.2°F	16	29	19	10	18	11	15
77°F	54	45	54	27	41	32	37
Viscosity - Poise	V	У ,		Y	Y	Y	Y
77°F	2.3x10 ⁰	4.2x10 ⁰	4.5x10 ⁰	12.4x10 ^v	3.2x10 [°]	7.0x10	7.0x10
140°F	2606	4982	2916	1		ł	ļ
275°F	3.7	4.4	3.9	6.1	4.3	4.8	4.5
Softening					×		
Point [°] F	124	130-131	128-129	137-139	126	134-135	130-132
Specific ,							
Gravity	1.02	1.02	1.02	ļ	ļ	ł	ł
Recovered							
% Asphalt							
Content	;	6.9	4.6	9.2	5.3	10.8	5.3
a) Average b) Taken im	of samples mediately a	per test value ifter constructi	uo				

c) Taken after six months in service
d) 77°F
e) Mix basis, 9% by wt core samples taken from approximately the same place in the road

 $t_{\rm C}^{0} = (t_{\rm F}^{\circ} - 32)$ 1.8

Table 1. Asphalt Properties Summary (Continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Penetration1083136 $39.2^{0}F$ $77^{0}F$ $77^{0}F$ 2824225630 $77^{0}F$ $77^{0}F$ 28 24.4×10^{6} $ 10.5\times1$ $77^{0}F$ 11×10^{6} 24.4×10^{6} $ 10.5\times1$ $77^{0}F$ 5.5 6.6 7.2 4.8 5.79 $275^{0}F$ 5.5 6.6 7.2 4.8 5.79 $275^{0}F$ 134 144 $ 139$ $275^{0}F$ 6.6 7.2 4.8 5.79 $50itening134144 1398corific6ravity6.70.70.66.68covered8covered8covered6.70.70.6$	THREE-YE Littercrete	EARS ^f Control
Penetration1083136 $39.2^{\circ}F$ $39.2^{\circ}F$ 56 5630 $70^{\circ}F$ $70^{\circ}F$ 28 24 24 22 5630 $70^{\circ}F$ $70^{\circ}F$ $270^{\circ}F$ $ 10.5 \times 1$ $70^{\circ}F$ $70^{\circ}F$ $ 10.5 \times 1$ $70^{\circ}F$ 5.5 6.6 7.2 4.8 5.79 $275^{\circ}F$ 5.5 6.6 7.2 4.8 5.79 50 $0.11^{\circ}P$ $ 20$ 134 144 $ 8ccificGravity 8ccoveredAshealt 7.26.67.24.85.798ccoveredGravity6.67.24.85.798ccoveredAshealt 7.26.67.26.67.24.86.67.2 134144 8ccovered8ccovered6.70.10.16.70.70.10.1 -$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·	
77 ⁰ F 28 24 22 56 30 Viscosity - Poise $11x10^{6}$ $24.4x10^{6}$ $ 10.5 x 1$ 77^{0} F 140^{0} F $ 10.5 x 1$ 140^{0} F $ -$	9	ω
Viscosity - Poise 11×10^{6} 24.4×10^{6} $ 140^{6}$ 24.4×10^{6} $ 140^{6}$ 25.5 6.6 7.2 4.8 5.79 5.79 275^{6} 7.2 4.8 5.79 5.79 Softening Point 6 134 144 $ 139$ 139 Point 6 Recovered 6	30	33
77°F 140°F 140°F 275°F 5.55 6.6 7.2 80ftening Point °F Secific Gravity Recovered Asphalt Content Content	10 5 : 106	0 60 1 106
140°F 275°F 5.556.6677.24.855.79 Softening Point °F Specific Gravity Recovered Asphalt Content	ANT X C'NT	201 X 20.6
275°F 5.55 6.6 7.2 4.8 5.79 Softening 134 144 - 139 Point °F 134 144 - 139 Specifich Gravity Gravity Recovered Asphalt Asphalt]	I
Softening Point ^o F Specific Gravity Recovered Asphalt Content c	5,79	5.39
Point "F 134 144 - 133 Specific Gravity Recovered Asphalt Content C	130	1,00
Specific Gravity Recovered Asphalt Contents	ACT	CCT
Recovered Asphalt Contentc		
Asphalt Asphal	l	, †_
	9.5	5.1

a) Average of samples per test value

b) 77ºF

Mix basis, 9% by wt core samples taken from approximately the same place in the road. c)

d) Taken after one year in service

e) Taken after two years in Service

Taken after three years in service (t°-32)

Ĵ

 $t^{0}c = \frac{(t^{0}f^{-}32)}{1.8}$

Aggregate gradation chart showing incinerator residue in relation to Texas Class Type C gradation specification.

Percent by Total Volume	Percent by Total Weight of Mix	Equivalent Percent ^a By Total Weight Mix	
80.9	0 89	91.0	
17.4	9.0	7.4	
1.7	2.0	1.6	
	Percent by Total Volume 80.9 17.4 1.7	Percent by Total VolumePercent by Total Weight of Mix80.989.017.49.01.72.0	Percent by Total VolumePercent by Total Weight MixEquivalent Percenta By Total Weight Mix80.989.091.017.49.07.41.72.01.6

^aEquivalent percent by total weight of mix assuming the aggregate had a specific gravity of 2.65.

3 Construction Sequence

Construction began in July 1974. Approximately 600 yd^3 (460 m^3) of incinerator residue were stockpiled at the Holmes Road Incinerator Plant. The residue was spread into a 1 ft (0.3 m) thick lift and bulk, hydrated lime was added to the residue at the approximate rate of 2% lime by dry weight of the material (to prevent asphalt stripping from the glass in the residue). Water was added and the residue and lime mixed to a depth of approximately 8 in. (200 mm).

The residue (with lime) was loaded into end dump trucks, hauled to an asphalt plant, and run through a conventional pug mill at 300 ^oF (150 ^oC). The material was then transported to the construction site and placed into a conventional asphaltic concrete laydown machine. The material was placed in two 3 in. (76 mm) lifts over 6 in. (150 mm) of lime-stabilized subgrade, and each lift was compacted with tandem, steel wheel rollers, and pneumatic rollers. Finally, a $1\frac{1}{2}$ in. (38 mm) conventional asphaltic concrete wear-ing surface was placed over the base material. After the pavement had cooled sufficiently, 4 in. (100 mm) diameter base cores were taken for testing purposes. Coring was repeated at ages of 6 months, one year, two years, and three years.

A control section placed adjacent to the littercrete section consisted of $1\frac{1}{2}$ in.(38 mm) maximum size limestone aggregate, natural sand fine aggregate, and 6% asphalt (by total weight of the mix). The design used is typical of pavement systems for the City of Houston, Texas.

4.0 Field Observations

Visual examinations of the pavement sections were taken monthly for the first six months in service and at three month intervals thereafter. These visual examinations were performed to observe the two pavement sections for evidence of cracking or noticeable failure. After two years in service small longitudinal cracks 3/16 in. (.476 cm) to 1/4 in. (635 cm) in size were noticed in both the littercrete and control sections (Figure 3, page 10). During the third year observation period it was noticed that although there were slightly more cracks, the cracks had not increased in size. At this time a core sample was taken from the cracked section to determine the depth of penetration of the crack.

The cracks were found to be in the wearing surface <u>only</u> Figure 4, page 10) and are believed to have been caused by shrinkage of the wearing surface due to temperature changes. These field observations indicate that the littercrete is performing in an excellent manner carrying the traffic and withstanding environmental effects very well. No rutting or shoving has occurred.

A traffic count was taken in 1973 at the test section with-results shown in Table 2, page 11. The number of 18 kip (81,700 kg) equivalent axle loads per day the test section would experience in 1973 is 170. Of this traffic it was found that approximately 78% was cars, 19% pickups, 2% single unit trucks and 1% heavy trucks. If a growth rate of 5% per year is assumed, in the three year period the test section would have been subjected to around 200,000-18 kip (81,700 kg) equivalent axle loads.

5.0 Laboratory Investigation

5.1 General

Laboratory investigations conducted in this study were performed on the littercrete and the adjacent control test section to:

1. Compare the littercrete and control mix properties.

2. Quantify the performance of the two pavement sections with time.

Field cores were drilled using a trailer-mounted rig and a 4 in. (10.2 cm) diamond-tipped core barrel. Various testing methods were utilized and the test results are recorded in the appendicies of this report.

Figure 3 Picture of longitudinal crack in littercrete section.

Figure 4 Picture of cracked wearing surface.

	Inbound	%	Outbound	%
Cars	4,362	80	3,677	76
Pick-ups	984	17	1,027	21
Single Unit Trucks	94	02	84	02
Heavy Trucks More than 2 axles or 2 tires on read	26	10	36	01
TOTAL	5,466	100	4,827	100

Table 2 1973 Traffic Data (Bingle Road at Hempstead Highway).

Average 18-kip equivalent axle loads per day - 170 Yearly 18-kip equivalent axle loads - 62,100

1 kip = 4540 kg

The testing program followed on the cores is given in Figure 5. The procedure for the different tests performed and means of data reduction involved can be found in the first report on this study.⁽⁹⁾ Also given in the first report are the data used in the graphs and tables involving laboratory, field and six month field compacted samples.

Ţ

A summary of the results of the tests performed is given in the appropriate sections which follow. Whenever possible the methods used in reducing and presenting the data are similiar to the methods used by other investigators as indicated in the literature. Linear regression equations and correlation coefficients are given for the least square regression lines, using small sample theory. Confidence intervals of 90 percent are given as applicable.

5.2 Specific Gravity

Some problems were associated with determination of the specific gravities of the cores of littercrete. Due to the hetrogeneity of the residue it was difficult to obtain representative samples of the mix. Samples of apparently similar gradation varied in composition which resulted in data scatter of the results. The Maximum Specific Gravity of the core samples $(ASTM D2041)^{(10)}$ was modified slightly to allow the use of a larger test sample which helped to reduce the amount of variability in results. The maximum specific gravity of the different core specimens are summarized in Table 3. As expected, some increase of specific gravity with time was experienced, probably due to densification of the aggregates in the asphaltic concrete.

5.3 Stability

Stability tests performed on the test samples consisted of the Hveem Stabilometer test and Marshall test. (9,10,11) A summary of these data are given in Figure 6 and Figure 7 with the individual data given in Appendix A. The six months field compacted Marshall Stability samples are very low in relation to the other samples which could be caused by testing of a bad sample. The minimum criteria for coarse aggregate type, hot plant mixes in the state of Texas for AC 20 and AC 10 is a Hveem stability of $30^{(13)}$. When placed both mixes satisfied the Hveem criteria for base courses. The minimum Marshall Stability recommended by the Asphalt In-

Figure 5 Testing Program for Core Samples

Material	Maximum. Speci Gravity	ific		
Laboratory Compacted				
CONTROL LETTERCRETE	2.20			
Field Compacted	• • • • • •	· · · · · · · · · · · · · · · · · · ·		
CONTROL LITTERCRETE	2.24 2.10	- - -		
Six Months Field Compacted				
CONTROL LITTERCRETE	2.43 2.06		·	
ONE YEAR Field Compacted				
CONTROL LITTERCRETE	2.37 2.13			
TWO YEAR Field Compacted				
CONTROL LITTERCRETE	2.38 2.14			
THREE YEAR Field Compacted				
CONTROL LITTERCRETE	2.43 2.13			

Table 3 Maximum Specific Gravity^a

^a ASTM Designation D2041

 $\left\langle \right\rangle$

۰.

. .

stitute of 750 lb $(3336N)^{(13)}$ was easily met by both the littercrete and blackbase control mixes, when placed.

Three year in-service Hveem Stability values for the littercrete were 20 (a 33% reduction) and for the control were 49 (a 5% reduction). With time in service the Marshall stability of the littercrete samples decreased from 1815 to 1349 (a 26% reduction) while the control samples decreased from 2830 to 1940 (a 31% reduction). The meaning of these reductions is not clear. Certainly some reduction in stability is to be expected. The Marshall values are still quite high, exceeding the recommended as-constructed minimum. On the other hand, the Hveem values for the littercrete are somewhat low. The literature yields no clues as to whether or not a reduction in Hveem values indicates future problems with the littercrete.

5.4 Splitting Tensile Strength

Graphs of the ultimate tensile strength of the various samples versus the unit deformation rate can be found in Appendix B for one, two and three year in-service specimens. (9,12) Linear regression lines showing the increase in strength with increasing deformation were determined. Figures 8,9, and 10 show a comparison of the splitting tensile strength results between the littercrete and control sections at 74°F (23°C) for one, two and three years in service. These figures indicate the two mixes have essentially the same ultimate splitting tensile strength for all three ages, which means the littercrete is holding up essentially the same as the black base control section in terms of load carry capacity.

5.5 Schmidt Test

Resilient Modulus versus temperature relationships are shown in Figures [9] The data for these graphs along with the 90% confidence limits of the specimens can be found in Appendix C of this report. The one, two, and three year field compacted samples were compared to resilient modulus at time of construction. In these figures it can be seen that the aged samples tend to have slightly greater values of resilient modulus. This would be expected taking time and traffic into consideration. After three years in service (Figure 11) the littercrete is performing essentially the same as when it was placed, while the control section has somewhat "hardened".

ILTIMATE STRENGTH psi

Ultimate strength versus unit defromation rate - 74°F two year field compacted littercrete and control sections splitting tensile test. Figure 9

Figure 13 Resilient Modulus versus temperature field compacted and three year field compacted samples, Schmidt test.

6. Implications of Results

As expected, some conflicting results were obtained. The Hveem stability values for the littercrete dropped significantly with time. What this means is not clear at present. Marshall Stability values are still quite good. Splitting tensile strengths and Resilient Modulus look excellent. And of course visual examinations indicate that the littercrete section is performing essentially the same as the blackbase control section. So the prognosis looks good. After three years in service all signs point to a long healthy life for the littercrete. APPENDIX A - EXPERIMENTAL RESULTS SUMMARY

ì

Table 4 Experimental Results Summary for Stability Tests.

Material	Number of Samples	Stability Value	90% Confidence Limits for Hveem Stabilometer Values	Percent Air Voids	Flow in.
(a) Hveem Stability ^a					
Laboratory compacted Littercrete	9	30	2.78	2.5	ł
Field compacted Littercrete Siy months Field	en	34	5.46	3.6	ł
compacted Littercrete	, C	24	6.19	4.2	I
Laboratory compacted Control Tiald commerted	e.	52	11.92	9.8	Je
Control Control	£	87	5.20	7.5	l
compacted Control	ę	56	7.44	8.5	ſ
			·	.*	· ·

ŗ

25

,

(Continued)
Tests.
Stability
for
Sumnary
Results
Experimental
Table 4.

Material	Number of Samples	Stability Value	90% Confidence Limits for Hveem Stabilometer Values	Percent Air Voids	Flow in.
(a) Hveem Stability ^a					
One Year Field Compacted Littercrete	4	19.	3.5	5.4	I
Two Year Field Compacted Littercrete	ς Γ	17.	2.1	8.4	I
Three Year Field Compacted Littercrete	m	20.	4.4	4.7	
One Year Field Compacted Control	e	42.	4.5	5.4	
Two Year Field Compacted Control	с,	35.	9.2	4.6	I
Three Year Field Compacted Control	m	49.	5.2	6.9	I
^a ASTM Designation D1560 ^b ASTM Designation D1559			1 1b = 454g 1 in• = 2.54	5	

Table 4 Experimental Results Summary for Stability Tests. (Continued)

. م

Material	Number of Samples	Stability Value	90% Confidence Limits for Marshall Stability Values	Percent Air Voids	Flow in.
(b) Marshall Stability ^b (1b)					
Laboratory compacted Littercrete Field commacted	9	1815	215.65	2.4	.19
Littercrete Six months Field	e S	0261	1132.67	3.6	ŗ.
compacted Littercrete	ເຕີ 	1150	578.25	4.2	.17
Laboratory compacted	 რ 	2830	661.69	9.8	.14
rieiu compacteu Control Six months Field	ę	2510	1030.79	7.5	.16
compacted Control	3	920	862.96	8.5	.15
^a ASTM Designation D1560.			1 1b = 454 g		· · ·
b ASTM Designation D1559.			1 in. = 2.54 ci	я	

.

Table 4 Experimental Results Summary for Stability Tests. (Continued)

Material	Number of Samples	Stability Value	90% Confidence Limits for Marshall Stability Values	Percent Air Voids	Flow in.	
(b) Marshall Stability ^b	(1b)					I 1
One Year Field Compacted Littercrete	Q	1500	111.	4.9	.16	
Two Year Field Compacted Littercrete	с С	134.	245.	7.4	.17	
Three Year Field Compacted Littercrete	2	134	20.	4.7	.18	
One Year Field Compacted Control	e	220	539.	5.4	.13	
Two Year Field Compacted Control	R	192	17.	4.2	.12	
Three Year Field Compacted Control	C	1940	382.	6.9	.12	
^a ASTM Designation D1560.			1 1b = 454	, Б		
bASTM Designation D1559			1 in. = 2.	54 cm	. '	

Table 5 Stability Tests Results. (Control)

Specimen	Bulk Specific	Air Voids	Hveem Stabilometer	Marshall Stability	Marshall Flow
Number	Lavi ty	rercent	кеаатид		E
One Year Field (Compacted Control				
CIA	2.283	3.3	42.0	2000	60.
C1B	2.195	7.1	47.0	2900	.11
C6C	2.225	5.8	37.5	1850	.18
Two Year Field (Compacted Control				
C10C	2.281	4.2	31.0	1911	.13
C18A	2.271	4.6	46.0	1946	.12
C15B	2.291	3.7	28.2	1918	.12
Three Year Fiel	d Compacted Contro				
C12A	2.254	4 7 4	48.0	2020	.12
C14B	2, 270	6.8	55.0	1837	60.
C16C	2.272	6.7	44.0	1465	.14

29

1 lb = 454 g1 in = 254 cm Table 6 Stability Tests Results. (Littercrete)

Specimen Number	Bulk Specific Gravity	Air Voids Percent	Hveem Stabilometer Reading	Marshall Stability lbs	Marshall Flow in.
One Year Fi	eld Compacted Litt	ercrete			
L10A	2.086	4.3	14.5	1550	.15
L12B	2.040	2.4	17	1330	.18
L11C	ı	I ,	·	1300	.18
T9A	2.081	4.1		1675	.11
T17B	2.015	3.6	24.5	1650	.14
T18C	2.060	3.8	20.5	1525	.17
Two Year Fi	eld Compacted Litte	ercrete			
VC 1	1 06.4	U C	17	1206	
L5C	1.963	0°0 8°3	20	1411	. 16
L78	2.024	5.2	15	1220	.16
$1 \ 1b = 4540$ 1 in = 2.50	t cm				

Table 6 Stability Tests Results. (Continued)

Specimen Number	Bulk Specific Gravity	Air Voids Percent	Hveem Stabilometer Reading	Marshall Stability lbs	Marshall Flow in.
Three Year Fi	eld Compacted Lit	tercrete			
LIC	2.048	3.9	16	1	· • •
L5A	2.025	5.0	18	1463	.19
L5B	2.016	5.4	25	1235	.18

1 lb = 454 g 1 in = 2.54 cm

Figure 15 Ultimate strength versus unit deformation rate two year field compacted control splitting tensile test.

Figure 19 Ultimate strength versus unit deformation rate three year field compacted littercrete splitting tensile test.

Table 7 Splitting Tensile Test Data (Littercrete).

Modulus ksi 68 96 152 1134 1117 226 226 472 714 2980 1074 173 157 222 280 282 282 762 762 762 762 762 281 281 6.9 kPa Failure Strain .0023 .0018 .0034 .0045 .0068 $\begin{array}{c} 0041\\ 0022\\ 0031\\ 0003\\ 0003\\ 0007\\ 0021\\ 0021\\ 0021\\ 0021\\ \end{array}$ 0038 0045 0040 0020 0005 0014 п psi -Ultimate Strength psi 38 35 88 88 78 69 158 158 326312 312 312 312 312 312 312 302 364 364 265 265 172 174 182 Deformation Ē 1n/in/min Rate 2.54 .05 ഹം .005 .005 .005 .005 .005 ഹ П in. ---Temperature °F One Year Field Compacted Littercrete Two Year Field Compacted Littercrete $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ Air Voids Percent - 32) / 1.8 3.3L.5 •6 4.2 5.2 6.7 6.7 6.4 1.2 = (t_F Sample Number L8A L9B L4C с t

Table 7 Splitting Tensile Test Data (Littercrete).(Continued)

,

Sample Number	Percent Air Voids	Temperature °r	Deformation Rate in/in/min	Ultimate Strength psi	Failure Strain	Modulus ksi
Two Year	Field Compacted	Littercrete (Cont	inued)			
-68	5.0	33	.05	354	.0017	1747
-3B	12.8	33	.05	193	.0013	1217
-7A	5.3	33	.05	423	.0018	2011
-6C	6.0	33	.5	173	.0024	698
.4B	6.0	33	.5	164	.0015	966
.2A	6.7	33	· 2 ·	398	.0019	1763
.5A	6.4	74	- 005	64	.0048	111
28	6.7	74	.005	50	.0053	80
.7C	5.4	74	.005	49	.0057	73
80	5.4	74	.05	119	.0041	240
9A	6.0	74	.05	109	. 0094	200
5B	6.1	74	.05	93	.0058	133
18	5.0	74	.5	215	.0031	577
6A	4.5	74	.5	240	.0035	567
88	6.7	74	.5	198	.0033	493
4A	8.6	74	.5	194	.0024	670

1 psi = 6.9 kPa

Table 7 Splitting Tensile Test Data (Littercrete). (Continued)

-Modulus ksi 193 115 438 400 124 127 73 73 83 156 136 136 209 2209 240 Failure Strain Strength Ultimate psi Deformation Rate **in/in/min** .005 .005 .05 Temperature THREE YEAR FIELD COMPACTED LITTERCRETE ŝ Air Voids Percent -50 . . . т. Sample Number ~

 $t^{0}c = (t^{0}F - 32)/1.8$

= 6.9 kPa

1 psi

2.54 cm

1 in.=

Table 8 Splitting Tensile Test Summary (Littercrete).

Sample 6	Number of Specimens	Temperature °F	Deformation Rate in/in/min	Ultimate Tensile Strength psi	Failure Strain	Modulus ksi
One Year Fiel Compacted Lit	d tercrete 3	33	. 005	318	.0038	182
			.05	. 329	.0021	441
			.5	343	.0016	622
	2	74	.005	36	.0020	82
•	Ω.		.05	. 78	.0049	161
			.5	158	.0041	331
Two Year Fiel	P					
compacted L10	.tercrete 3	33	.005	176	.0013	1589
			.05	323	.0016	1658
			ۍ .	245	.0019	1153
	M	74	.005	55	.0052	88
	с		.05	. 106	.0065	191
-	4		• £	211	.0030	576
$t^{0}c = (t^{0}F -$	32)/1.8		1 in. = 2.54 cm		l psi	i = 6.9 kPa

Table 8 Splitting Tensile Test Summary (Littercrete). (Continued)

•

Samp Le Number	Number of Samples	Temperature °F	Deformation Rate in/in/min	Ultimate Strength psi	Failure Strain	Modulus Ksi
Three Year Compacted L	Field .ittercrete		· · · · · · · · · · · · · · · · · · ·	77 - 1 77 - 1 7		
	2	32	.005	202	.0014	154
	5	32	.05	378	. 0009	419
	4	32	ع	338	.0030	113
	_	74	.005	32	.0044	73
	ŝ	74	.05	۲٦	.0055	132
	ŝ	74	<u></u> ی	101	.0047	214
t c = (t F	- 32)/1.8	ui I	= 2.54 cm	1 psi =	- 6.9 kPa	
						-

ţ

Table 9 Splitting Tensile Jest Data (Control)

Sample	Percent Air Voids	Temperaturo °F	Deformation Rate in/in/min	Ultimate Strength Psi	Failure Strain	Modulus ksi
One Year	Field Compacted Con	trol		-		
4C	6.9	33	.005	153	.001	315
3B 3B	6.2	33	.005	279	.0034	180
2A	3.0	33		312	.0033	213
50	5.6	33	.05	186	.0065	867
6B	2.8	33	.05	302	.0011	584
7A		33		263	0008	1000
58		33 33	22	390	.0011	739
10	4.6	33	21	356	.0014	557
44	4.1	74.	005	78	6000	199
7B		74	.005	67	.0013	166
20	6.1	74	.005	38	0011	94
5A	6. C	74	.05	108	.0011	210
4B	2.9	74	.05	110	.0011	225
30	2.2	74	.05	83	.0012	151
6A	3.4	74	5	196	.0008	535
8B	2.0	, 74	<u>.</u>	122	.000	285
7C	3.7	74	•5	197	6000 °	463
Two Year	Field Compacted Con	trol				
C10B	5.7	33	.005	139	.0022	521
C15A	3.6	33	.005	239	.0021	1001
C12C	4.4	33	.005	223	.0016	1016
C14B	6.0	33	.05	260	0023	950
C16A	0.00	33 /	.05	412	.0020	1681
C17B	7_0	33	.05	256	.0019	1122
C13A	4 2	33	.5	203	0024	716 -
C16B	7.0	33		111	.0012	404
C11C	6.8	33	•5	159	.0028	479
tr = (tr	- 32)/1.8		1 in = 2 54 cm	1 nsi = (6.9 kPa	
) 1	5	

43

d:

Table 9 Splitting Tensile Test Data (Control) (Continued)

Ŀ

						Ĩ
Sample Number	Percent Air Voids	Temperature °F	Deformation Rate in/in/min	Ultimate Strength psi	Failure Strain	Modulus Ksi
Two Year F	ield Compacted (Control (Continued)				
C13B C11A	5.4 4.3	74 74	.005	59	.0053	95
C10A	4.3	74	.005	67	.0037	153
C17A C11B	5.0	74 77	.05	108	.0038	237
C12B	- -	74	.05	119	.0041 0056	238 178
C18B	3.6	74	.5	173	.0020	721
C12A	4.5	74	· 2	253	.0033	645
C14A	4.7	74	.5	243	.0033	623
Three Year	Field Compacted	Control				
C14A	6.2	32	.005	64	.0012	53
C15C	6.2	32	.005	210	.0028	74
C16C	6.7	32	. 05	327	.0036	06
C13A	5.8	32	.05	393	.0013	130
C138	5.6	32	۲	425	.0033	130
C198	ν.	32	ŗ.	427	.0033	130
C11A C13C	ی. ۲ - ۲	32 77	с. 100	384	.0022	177
CIJR	- C	+ L	.00.	7C	7cnn.	1000
C14C	6.7	74	20.	90	. UU30	007
C19C	5.7	74	2.0	149	0034	901
C15C	6.2	74	• ک ا	163	.0032	150
CIIC	7.5	74	.5	134	.0055	120
$t^{0}c^{-} = (t^{0}$	F - 32)/1.8	1 in	= 2.54 cm		psi = 6.9 kPa	T Bas

1 - <u>J</u>

(p

,

Table 10 Splitting Tensile Test Summary (Control)

Modulus ksi 236 740 765 153 195 427. 1 846 1253 533 218 133 663 Failure .0008 .0000 .0045 .0025 .0020 Strain .0011 .0011 .0043 .0029 .0011 0021 .0021 6.9 kPa 11 psi Strength Ultimate Tensile psi -256 336 100 158 154 200 309 61 237 66 122 223 Deformation Rate in/in/min .005 .05 ي • • 002 · .05 .005 .05 ഹ 1 in.= 2.54 cm ഹ .005 .05 s. Temperature [편4 0 74 33 74 33 $t^{0}c = (t^{0}F - 32) / 1.8$ Number of Specimens \sim \sim \sim က ĉ ŝ \sim \mathbf{c} ŝ Compacted Control Compacted Control One Year Field Two Year Field Sample

Table 10 Splitting Tensile Test Summary (Control) (Continued)

Sample Number	Number: of Samplas	Temperature °F	in/in/min	Strength psi	Failure Straîn	Modulus Itsi
, Three Year	· Field					
Compacted	Control					
	2	32	.005	137	.0020	64
:	5	32	. 05	360	.0024	110
	S	32	.5	412	.0029	145
	L	74	.005	32	.0052	16
	2	74	. 05	84	.0045	200
	ę	74	.5	148	.0040	133

. 46

APPENDIX C - Schmidt Test Results

Sample Number	Specific Gravity	Percent Air Voids	Temperature °F	Resilient Modulus ksi
		· · · · · · · · · · · · · · · · · · ·		
(A) One	Year Field (Compacted Con	trol	
C-1A	2.282	- 3.3	-9	3651
C-1B	2.195	7.1	-9	4303
C-6C	2.225	5.8	-9	3180
C-1A	2.282	3.3	32	2709
C-1B	2.195	7.1	32	2750
C-6C	2.225	5.8	32	1991
C-1A	2.282	3.3	68	1186
C-1B	2.195	7.1	68	920
C-6C	2.225	5.8	68	837
C-1A	2.282	3.3	100	133
C-1B	2.195	7.1	100	120
C-6C	2.225	5.8	100	111

Table	11	Sobmid+	Teet	Doculto
lable	ΤT	Schillar	iest	Results.

47

T,

- , ;

Sample Number	Specific Gravity	Percent Air Voids	Temperature °F	Resilient Modulus ksi	
(B) One	Year Field Co	ompacted Litt	ercrete (Heavy T	raffic)	
Т9А	2.081	.4	9	4423	
T17B	2.015	3.5	-9	3107	
T18C	2.060	1.4	-9	3320	
Т9А	2.081	0.4	. 32	2548	
T17B	2.015	3.5	32	1948	
T18C	2.060	1.4	32	1503	
T9A	2.081	0.4	68	943	
T17B	2.015	3.5	68	333	
T18C	2.060	1.4	68	631	
T9A	2.081	0.4	100	74	
T17B	2.015	3.5	100	98	
T18C	2.060	1.4	100	65	
<u>(C)</u> One	Year Field (Compacted Lit	tercrete (Light	traffic)	
L-10A	2.086	.2	-9	4441	
L-12B	2.040	2.4	-9	4444	
L-10A	2.086	.2	32	2588	
L-12B	2.040	2.4	32	2075	
L-10A	2.086	.2	68	814	
L-12B	2.040	2.4	68	842	
L-10A	2.086	.2	100	058	
L-12B	2.040	2.4	100	059	×

Table 11 Schmidt Test Results. (Continued)

• 🗄

Sample Number	Specific Gravity	Percent Air Voids	Temperature °F	Resilient Modulus ksi	
(D) Two	Year Field (Compacted Con	trol		
C10C	2.281	4.2	-9	4388	
C18A	2.271	.4.6	-9	6331	
C15B	2.291	3.7	9	508 9	
C10C	2.281	4.2	32	1801	
C18A	2.271	4.6	32	2050	
C15B	2.291	3.7	t 32	2189	
C10A	2.280	4.2	74	471	
C10B	2.246	5.6	74	434	
C10C	2.281	4.2	74	404	
C11A	2.271	4.2	. 74	482	
C11B	2.291	5.1	74	577	
C11C	2.281	6.6	. 74	500	
C12A	2.276	4.3	· ⁻ 74	563	
C12B	2.254	5.3	74	459	
C12C	2.278	4.3	74	478	
C13A	2.284	4.0	74	490	
C13B	2.251	5.4	74	468	
C14A	2.272	4.5	74	514	
C14B	2.242	5.7	74	495	
C15A	2.298	3.4	74	500	
C15B	2.291	3.7	74	417	
C16A	2.290	3.7	74	.520	
C16B	2.215	6.9	74	353	

.

Table 11 Schmidt	Test	Results.	(Continued))
------------------	------	----------	-------------	---

Sample Number	Specific Gravity	Percent Air Voids	Temperature °F	Resilient Modulus ksi	
C17A	2.266	4.8	74	456	· · ·
C17B	2.306	3.1	· 74	407	
C18A	2.271	4.6	74	450	. '
C18B	2.298	3.4	74	558	
C10C	2.281	4.2	104	92	
C18A	2.271	4.6	104	173	
C15 B	2.291	3.7	104	90	
(E) Two	Year Field (Compacted Lit	tercrete		
L 3A	1.954	8.6	-9	3318	
L5C	1.963	8.3	-9	2381	
L7B	2.025	5.2	-9	3560	
L3A	1.954	8.6	32	1712	
L5C	1.963	8.3	32	1903	
L7B	2.025	5.2	32	1808	
L1A	1.993	6.8	7'4	644	
L1B	2.032	5.0	74	549	
L2A	1.995	6.7	74	625	
L2B	1.995	6.7	, 74	548	
L3A	1.954	8.6	74	564	
L3B	1.866	12.8	74	410	
L4A	1.954	8.7	74	663	
L4B	2.012	6.0	74	440	
L4C	2.003	6.4	74	552	

Table 11 Schmidt Test Results. (Continued)

Sample Number	Specific Gravity	Percent Air Voids	Temperature ⁰F	Resilient Modulus ksi	
L5A	2.003	6.4	74	698	
L5B	2.010	6.1	74	475	
L5C	1.963	8.3	74	494	
L6A	2.037	4.8	74	669	
L6B	2.033	5.0	74	509	·
L7A	2.027	5.3	74	608	,
L7B	2.025	5.2	74	288	
L7C	2.024	5.4	74	475	
L8A	1.997	6.7	74	436	
L8B	1.995	6.0	74	619	
L8C	2.030	5.0	74	575	
L9A	2.012	6.0	74	593	
L9B	2.015	5.8	74	397	
L 3A	1.954	8.6	104	1075	
L5C	1.963	8.3	104	085	
L7B	2.025	5.2	104	036	
(F) Three	Year Field (Compacted Lit	tercrete	· · · · · · · · · · · · · · · · · · ·	
L1C	2.048	3,9	-9	3718	
L5A	2.025	5.0	-9	3229	
L5B	2.016	5.4	-9	2658	
L1C	2.048	3.7	32	1544	
L5A	2.025	5.0	32	1559	:
L5B	2.016	5.4	32	1604	

Table 11 Schmidt Test Results. (Continued)

	<u>.</u>	·····	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Sample Number	Specific Gravity	Percent Air Voids	Temperature °F	Resilient Modulus ksi	
L1A	2.014	5,5	74	485	
L1B	1.990	6.6	74	547	
L1C	2.048	3.9	74	456	
L3A	2.052	3.7	74	484	
L3B	1.966	6.4	74	498	
L4A	2.034	4.6	74	389	
L4B	2.020	5.2	74	418	
L5A	2.025	5.0	74	540	
L5B	2.015	5.4	74	514	
L6A	2.025	5.1	74	512	
L6B	1.992	6.6	74	559	
L6C	2.053	3.7	74	558	
L7A	2.053	5.7	74	482	_
L7B	2.101	1.4	74	556	
L7C	2.041	4.3	74	460	
L8A	2.009	5.7	74	505	
L8B	2.027	4.9	74	449	
L10A	2.024	5.1	74	532	
L10B	2.070	2.9	74	518	
L11A	2.042	4.2	74	485	
L11B	2.023	5.1	74	497	
L12A	2.012	5.6	74	557	
L12B	1.924	9.7	74	529	
L1C	2.048	3.7	100	39	

Table 11 Schmidt Test Results. (Continued)

Sample Number	Specific Gravity	Percent Air Voids	Temperature °F	Resilient Modulus ksi	
L5A	2.025	5.0	100	46	
L5B	2.016	5.4	100	49	
(G) Three	Year Field C	ompacted Contr	<u></u>		
C 12A	2.254	7.4	-9	5703	
C14B	2.270	6.8	-9	4627	
C16C	2.272	6.7	-9	4495	
C12A	2.254	7.4	32	2539	
C14B	2.270	6.8	32	2718	
C16C	2.272	6.7	32	2951	
C11A	2.290	5.9	74	935	-
C11B	2.292	5.9	74	963	•
C11C	2.252	7.5	74	925	
C12A	2.254	7.4	74	956	
C12C	2.22	8.7	74	1053	
C13A	2.293	5.8	74	964	•
C13B	2.298	5.6	74	1009	
C13C	2.263	7.1	74	909	
C14A	2.283	6.2	74	929	
C14B	2.270	6.8	74	1070	
C14C	2.272	6.7	74	1059	
C15A	2.289	6.0	74	993	
C15C	2.285	6.2	74	991	
C16A	2.305	5.3	74	896	

Table 11 Schmidt Test Results. (Continuéd)

Sample Number	Specific Gravity	Percent Air Voids	Temperature ⁰F	Resilient Modulus ksi	
C16C	2.272	6.7	74	929	
C19A	2.306	6.0	74	1077	
C19C	2.296	5.7	74	1036	
C12A	2.254	7.4	100	127	
C14B	2.270	6.2	100	104	
C16C	2.272	6.7	100	111	

2.

Table 11 Schmidt Test Results. (Continued)

t°c = (t°F - 32)/1.8

1 psi = 6.9 kPa

Table 12 Schmidt Data Summary.

Sample	Number of Samples	Temperature	M _R ksi	90% Confidence Limits for M _R	M Range Ƙsi
One Year field Compacted	Control				
	e	6-	3710	536	3180 - 4803
	m	32	2480	405	1991 - 2750
	m	68	981	173	837 - 1186
	ω	100	121	10	111 - 133
One Year field Compact	ted Littercrete				
	2	6-	4441		4441 - 4441
	5	32	2696	424	2588 - 2805
	5	68	828	23	814 - 842
(Light Traffic)	Ż	100	58	1	58 - 59
One Year field Compacted	Littercrete				
	3	6-	3620	671	3107 - 4423
	ო	32	2000	498	1503 - 2548
	m	68	800	289	631 - 943
(Heavy Traffic)	ŝ	100	79	. 16	65 - 98
$t^{\circ}c = (t^{\circ}F - 32) / 1.8$				1 psi = 6.9 kPa	

55

7.0

-

Table 12 Schmidt Data Summary (Continued)

Sample	Number of Samples	Temperature °F	M _R ksi	90% Confidence Limits for M _R	M _R Range ksi
Two Year Field Compa	icted Littercrete				
	e	6-	3086	59	2381 - 3506
	m	́ 32	1807	06	1712 - 1903
	23	74	610	. 35	.869386.
	 Ƙ	104	76	34	36 - 107
Two Year Field Compa	icted Control				-
	m	6-	5089	934	4388 - 6331
	m	32	2065	148	2050 - 208
	23	- 74	478	20	353 - 577
	£	104	118	45	90 - 173
$t^{c}c = (t^{c}F - 32) / 1.8$			I psi	= 6.9 kPa	

. Table 12 Schmidt Data Summary (Continued)

.

M Range	ks1	2658 - 3718	1544 - 1604	389 - 559	. 39 - 49		4495 - 5703	2539 - 2951	897 - 1179	104 - 127
90% Confidence Limits for	α	504	30	15	ى ب		630	196	28	11
MR Rsi		3201	1569	501	45		4942	2736	666	114
Temperature °F		6-	32	74	109		6-	32	74	100
Number of Samples	acted Littercrete	9	ຕ	23	m '	acted Control	e	£	18	Ω
Sample	Three Year Field Comp					Three Year Field Comp			_	·

 $t^{\circ}c = (t^{\circ}F - 32) / 1.8$

0

1 psi = 6.9 kPa

REFERENCES

- Professional Engineering Staff, "Can the U. S. Hang in There in Terms of Material Resources?" <u>Professional Engineer</u>, Vol. 43, No. 6, June 1975, pp15-17.
- 2. Witczak, M. W. "A Generalized Investigation of Selected Highway Design and Construction Factors, by Regional Geomorphic Units within the Continential United States," <u>Research Report</u> <u>NCHRP 1-3(1)</u>, Purdue University, 1970.
- MacFarland, W. F., "Case Study Houston, Texas," Section 2.2, in Final Report on the Feasibility of Using Solid Waste in <u>Highway Construction and Maintenance</u>, Texas Transportation Institute, Texas A&M University, College Station, Texas, October 1971, p. 23
- 4. Darney, A. and Franklin, W. E., "Salvage Markets for Materials in Solid Wastes," <u>Environmental Protection Publication (SW-29</u>), Midwest Research Institute, Kansas City, Missouri, 1972, pp 121-124.
- Environmental Protection Agency, "Second Report to Congress, Resource Reduction," <u>Environmental Protection Publication</u> (SW-122) U. S. Governmental Printing Office, Washington, D. C., 1974.
- Klumb, David L., and Wendling, R. P., "Electricity from Solid Waste - Union Electric Company's 8000 ton per Day Solid Waste Utilization System," presented at the November, 1975, Annual Meeting of ASCE, Denver, Colorado, p. 12.
- Kenahan, C. B. et al., "Composition and Characteristics of Municipal Incinerator Residues," <u>A Report of the U. S. Bureau</u> of Mines, U. S. Department of the Interior, Department of Investigations, 7204, Dec., 1968.
- 8. Walter, C. Edwards, "Practical Refuse Recycling," pending publication by ASCE.
- 9. Haynes, J. and Ledbetter, W. B., "Incinerator Residue in Bituminous Base Construction," <u>FHWA-RD-76-12</u>, Federal Highway Administration Offices of Research and Development, Washington, D. C., Dec. 1975.
- 10. _____, ASTM Designation D2041, <u>1975 Annual Book of ASTM</u> Standards, Part 15, pp.484-486.

- 11. _____,ASTM Designation D2726, <u>1975 Annual Book of ASTM</u> Standards, Part 15, pp. 633-634.
- 12. Breen, J. J., and Stephens, J. E. "Split Cylinder Test Applied to Bituminous Mixtures and Low Temperatures," <u>ASTM Journal of</u> <u>Materials</u>, Vol. 1, Mar., 1966, pp66-67.
- Asphalt Institute, "Bituminous Aggregate Base Course: Survey of State Practices," <u>Highway Research Board Special Report 117</u>, 1971.
- 14. Britton, S. C., Bynum, D., Jr., and Ledbetter, W. B., "Evaluation of Asphalt Structural Performance," <u>Research Report 127-4(F)</u>, <u>Research Study 2-8-69-127</u>, Texas Transportation Institute, Texas A&M University, College Station, May, 1971.

© U.S. GOVERNMENT PRINTING OFFICE, 1979 -627-848/1927

· · · ·

· · ·

-

, .